Phytoremediation as a Tool to Remove Drivers of Antimicrobial Resistance in the Aquatic Environment

Author:

Chowdhury Kaniz F.ORCID,Hall Rebecca J.ORCID,McNally AlanORCID,Carter Laura J.ORCID

Abstract

AbstractAntimicrobials, heavy metals, and biocides are ubiquitous contaminants frequently detected in water bodies across the globe. These chemicals are known as drivers of antimicrobial resistance (AMR), as these chemicals can select for resistance. Tools and processes, are therefore, needed to remove these chemicals from the environment to tackle the environmental component of AMR. Aquatic phytoremediation is a nature-inspired green solution to remove contaminants from the environment. Phytoremediation utilises macrophytes’ ability to sequester and degrade chemical pollutants in aquatic environments. In this review, we define the problem statement by highlighting the presence of AMR drivers in the aquatic environment. We also provide an in-depth review of phytoremediation to tackle chemical pollution by evaluating mechanisms for the removal and degradation of chemicals. This review identifies potential hyper-accumulators and understands how plant species and chemical composition can influence the potential for accumulation. Different pollutants accumulate to different extents in a range of aquatic macrophytes. Therefore, the combined use of floating, submerged and emergent plants would facilitate the optimum removal of AMR drivers considered in this review. A suggested configuration includes Helianthus annus around the edge of a contaminated site, followed by a belt of submerged plants (Myriophyllum aquaticum) and a bed of floating plants (e.g., Lemna species) together with the hyperaccumulator, Phragmites australis. Whilst phytoremediation offers a promising option to treat contaminated water, several critical knowledge gaps still exist. The effect of co-exposure to contaminants on the accumulation potential of plants and the fate of antibiotic-resistant genes and bacteria during the phytoremediation process are highlighted in this review. Based on this understanding, targeted areas for future research are proposed.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3