Experimental and numerical thermo-mechanical analysis of friction stir welding of high-strength alluminium alloy

Author:

Veljic Darko1,Sedmak Aleksandar2ORCID,Rakin Marko3,Bajic Nikola1,Medjo Bojan3,Bajic Darko4,Grabulov Vencislav5

Affiliation:

1. IHIS Techno Experts Ltd., Belgrade

2. Faculty of Mechanical Engineering, Belgrade

3. Faculty of Technology and Metallurgy, Belgrade

4. University of Montenegro, Faculty of Mechanical Engineering, Podgorica, Montenegro

5. Institute for Materials Testing IMS, Belgrade

Abstract

This paper presents experimental and numerical analysis of the change of temperature and force in the vertical direction during the friction stir welding of high-strength aluminium alloy 2024 T3. This procedure confirmed the correctness of the numerical model, which is subsequently used for analysis of the temperature field in the welding zone, where it is different to determine the temperature experimentally. 3D finite element model is developed using the software package Abaqus; arbitrary Lagrangian-Eulerian formulation is applied. Johnson-Cook material law and Coulomb?s Law of friction are used for modelling the material behaviour. Temperature fields are symmetrical with respect to the welding line. The temperature values below the tool shoulder, i.e. in the welding zone, which are reached during the plunge stage, are approximately constant during the entire welding process and lie within the interval 430-502?C. The temperature of the material in the vicinity of the tool is about 500?C, while the values on the top surface of the welding plates (outside the welding zone, but close to the tool shoulder) are about 400?C. The temperature difference between the top and bottom surface of the plates is small, 10-15?C.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3