Simulation of Rainfall-Runoff process using SWAT model in Bouhamdane watershed, Algeria

Author:

Abdelkebir Brahim1,Guesri Mourad2,Mokhtari Elhadj3,Engel Bernard4

Affiliation:

1. Laboratoire de génie civil et d’hydraulique, Université mai, Guelma, Guelma, Algeria + Laboratory of Water, Environment and Renewable Energies, Faculty of Technology, University of M’sila, Ichebilia, M’sila, Algeria

2. Research Laboratory Valorisation of Water Resources “V.R.E”, Tlemcen University, Tlemcen, Algeria

3. Laboratory of Water, Environment and Renewable Energies, Faculty of Technology, University of M’sila, Ichebilia, M’sila, Algeria

4. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, USA

Abstract

The current research examines the runoff response in the Bouhamdane watershed in Algeria using the soil and water assessment tool (SWAT). The SWAT model is applied for the Bouhamane watershed, which includes three sub-watersheds and 45 Hydraulic Response Units (HRUs). To assess the ability and effectiveness of the model, one-gauge station in the basin (sabat) was chosen. Monthly discharge flow data are sourced from Algeria's National Water Resources Agency (NWRA). The soil and water assessment tool calibration uncertainty programs (SWAT-CUPs) with the sequential uncertainty fitting (SUFI 2) algorithm were used to calibrate and validate the model. The model was run from 1985 to 2004, with a calibration period between 1985 and 1994 and a validation period between 1995 and 2005. The model's runoff simulation efficiency has been improved by adjusting watershed input parameters. The SWAT model's performance was assessed statistically (coefficient of determination [R2], Nash-Sutcliffe Efficiency Coefficient [NSE], and Percent BIAS [PBIAS]). The monthly calibration R2, NSE, and PBIAS were 0.89, 0.68, and 43, respectively, and the monthly validation R2, NSE, and PBIAS were 0.78, 0.76, and 10.4, respectively. These results support that the SWAT model is an effective tool for simulating the surface runoff of the Bouhamdane watershed.

Publisher

National Library of Serbia

Subject

Atmospheric Science,Geology,Education,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3