ProRes: Proactive re-selection of materialized views

Author:

Mouna Mustapha1,Bellatreche Ladjel2,Boustia Narhimene1

Affiliation:

1. LRDSI Laboratory, Faculty of Science, University Blida, Blida, Algeria

2. LIAS/ISAE-ENSMA, Poitiers, France

Abstract

Materialized View Selection is one of the most studied problems in the database field, covering SQL and NoSQL technologies as well as different deployment infrastructures (centralized, parallel, cloud). This problem has become more complex with the arrival of data warehouses, being coupled with the physical design phase that aims at optimizing query performance. Selecting the best set of materialized views to optimize query performance is a challenging task. Given their importance and the complexity of their selection, several research efforts both from academia and industry have been conducted. Results are promising ? some solutions are being implemented by commercial and open-source DBMSs ?, but they do not factor in the following properties of nowadays analytical queries: (i) largescale queries, (ii) their dynamicity, and (iii) their high interaction. Studies to date fail to consider that complete set of properties. Considering the three properties simultaneously is crucial regarding today?s analytical requirements, which involve dynamic and interactive queries. In this paper, we first present a concise state of the art of the materialized view selection problem (VSP) by analyzing its ecosystem. Secondly, we propose a proactive re-selection approach that considers the three properties concurrently. It features two main phases: offline and online. In the offline phase, we manage a set of the first queries based on a given threshold ? by selecting materialized views through a hypergraph structure. The second phase manages the addition of new queries by scheduling them, updates the structure of the hypergraph, and selects new views by eliminating the least beneficial ones. Finally, extensive experiments are conducted using the Star Schema Benchmark data set to evaluate the effectiveness and efficiency of our approach.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Genetic Algorithm for Materialized View Optimization in Data Warehouses;2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC);2024-06-11

2. A Hybrid Metaheuristic Framework for Materialized View Selection in Data Warehouse Environments;International Journal of Cooperative Information Systems;2023-08-29

3. Safeness: Suffix Arrays Driven Materialized View Selection Framework for Large-Scale Workloads;Big Data Analytics and Knowledge Discovery;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3