Query Interaction Based Approach for Horizontal Data Partitioning

Author:

Bellatreche Ladjel1,Kerkad Amira1

Affiliation:

1. LIAS/ISAE-ENSMA, Poitiers University, Poitiers, France

Abstract

With the explosion of data, several applications are designed around analytical aspects, with data warehousing technology at the heart of the construction chain. The exploitation of this data warehouse is usually performed by the use of complex queries involving selections, joins and aggregations. These queries bring the following characteristics: (1) their routinely aspects, (2) their large number, and (3) the high operation sharing between queries. This interaction has been largely identified in the context of multi-query optimization, where graph data structures were proposed to capture it. Also during the physical design, the structures have been used to select redundant optimization structures such as materialized views and indexes. Horizontal data partitioning (HDP) is another non-redundant optimization structure that can be selected in the physical design phase. It is a pre-condition for designing extremely large databases in several environments: centralized, distributed, parallel and cloud. It aims to reduce the cost of the above operations. In HDP, the optimization space of potential candidates for partitioning grows exponentially with the problem size making the problem NP-hard. This paper proposes a new approach based on query interactions to select a partitioning schema of a data warehouse in a divide and conquer manner to achieve an improved trade-off between the optimization algorithm's speed and the quality of the solution. The effectiveness of our approach is proven through a validation using the Star Schema Benchmark (100 GB) on Oracle11g.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3