Impact of forward emitter current gain and geometry of pnp power transistors on radiation tolerance of voltage regulators

Author:

Vukic Vladimir1ORCID,Osmokrovic Predrag2

Affiliation:

1. Institute of Electrical Engineering “Nikola Tesla”, Belgrade

2. Faculty of Electrical Engineering, Belgrade

Abstract

Low-dropout voltage regulators with various geometries and technological realisations of serial pnp power transistors were exposed to ionizing radiation. Although devices with vertical emitters were considered much less susceptible to the influence of radiation on forward emitter current gain than circuits with round emitters, the experiment showed a similar degradation of current gain in both cases. The main reason of high radiation susceptibility of the examined vertical serial pnp transistor is the implementation of an interdigitated emitter, with high perimeter-to-area ratio, causing the great increase of serial transistor?s base current, but a minor influence on the maximum output current. Transistors with round emitters with small perimeter-to-area ratio expressed a moderate current gain degradation, but a rapid fall of the emitter injection efficiency, causing a significant decrease of the maximum output current. Regardless of the similar forward emitter current gain degradation, reliability and operational characteristics of two types of low-dropout voltage regulators were completely different.

Publisher

National Library of Serbia

Subject

Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3