Numerical modeling of the porosity influence on the elastic properties of sintered materials

Author:

Abdulrazag Elmiladi1,Balac Igor1,Colic Katarina2,Grbovic Aleksandar1ORCID,Milovancevic Milorad1,Jelic Milos3

Affiliation:

1. University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

2. University of Belgrade, Innovation Center of the Faculty of Mechanical Engineering, Belgrade, Serbia

3. "ALFATEC" R&D Centre, Niš, Serbia

Abstract

The effect of structural porosity on the elastic properties of sintered materials was studied using the new multi-pore unit cell numerical model - MPUC. Comparison between proposed MPUC model and previously adopted two-phase unit cell - FCC numerical model as well as available experimental data in literature, was done by comparing obtained values for modulus of elasticity - E, shear modulus - G and Bulk modulus - K. Results obtained by proposed MPUC model are in excellent agreement with available experimental data in literature. It was confirmed that material porosity regarding pores? size (volume fraction) has noticeable influence on elastic properties of sintered material. Less porosity in the material microstructure generally leads to noticeable higher values of E, G and K. For fixed volume fraction, shape of pores has no significant influence on elastic characteristics.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3