Influence of raster angle on tensile properties of FDM additively manufactured plates made from carbon reinforced PET-G material

Author:

Elayeb Abdelnaser1,Jankovic Milan1ORCID,Dikic Stefan2ORCID,Bekric Dragoljub1ORCID,Balac Igor1

Affiliation:

1. University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

2. University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia

Abstract

Tensile properties of thin plate specimens made from short carbon fiber reinforced PET-G material are experimentally evaluated for various raster angles (printing directions). In additive manufacturing (AM), raster angle is recognized as one of the key printing parameters which strongly influences the strength and stiffness of the final part. The relatively high average value of ultimate tensile strength was obtained for specimens printed with the 0? raster angle, compared to the value obtained for specimens printed with the 90? raster angle - 52.2 MPa and 25.4 MPa, respectively. Similarly, noticeably higher average value of modulus of elasticity was obtained for specimens printed with the 0? raster angle, compared to the value obtained for specimens printed with the 90? raster angle - 4752 MPa and 1569 MPa, respectively. Scanning electron microscopy (SEM) was used for analysis of specimens? fracture surfaces. SEM images revealed considerable volume fraction of voids (porosity). ?he porosity, together with weak bonding between two adjacent rasters, could be one of key factors for poor tensile properties of samples printed with rasters perpendicular to direction of load application (90? raster angle).

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3