Comparison study of CFD and artificial neural networks in predicting temperature fields induced by natural convention in a square enclosure

Author:

Zhou Shiyu1,Liu Xiaoping2,Du Guangyue2,Liu Chuanze2,Zhou Yucheng2

Affiliation:

1. Shandong Jianzhu University, School of Thermal Engineering, Jinan, Shandong, China

2. Shandong Jianzhu University, School of Information and Electrical Engineering, Jinan, Shandong, China

Abstract

Natural convection in an enclosure is a classical problem in heat transfer field. In this study, natural convection induced by the heat source in the enclosure is studied with two analysis methods, i. e. CFD and artificial neural networks (ANN). The heat transfer in the enclosure is an unsteady process. During this process, the temperature fields in the enclosure are changing with time. The vertical temperature field of y = 0 at one moment is picked up for investigation. Firstly, FLUENT software which is a simulation program of CFD is adopted to simulate the temperature fields under different computation conditions. Then part of the simulation condition?s temperature data is picked for training an ANN model and the rest of data is used for validating the ANN model. It has been found from the comparison between the CFD simulation and ANN prediction that the two results have a good agreement with each other. In the comparison, the max relative errors are around 12%, mean relative errors are around 0.3%, mean square errors are around 0.6%, values of absolute fraction of variance are all not less than 0.99. The results demonstrated that the ANN prediction have enough accuracy.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3