Effects of elastic pillars on fluid-flow and heat transfer enhancement in a micro-channel

Author:

Ye Mingzheng1,Yang Xian1,Wang Jin1,Vujanovic Milan2,Sundén Bengt3

Affiliation:

1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China

2. Department of Energy, Power Engineering and Environment, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia

3. Department of Energy Sciences, Division of Heat Transfer, Lund University, Lund, Sweden

Abstract

In this paper, periodic vortices are generated by a fluid passing a cylindrical obstacle, d, near the micro-channel inlet. Two elastic pillars are arranged on the walls, and the effect of the pillar spacing on heat transfer performance is studied using the Arbitrary Lagrangian-Euler method. With the spacing of 10d, the small pillar amplitude of 2 ?m is not conducive to the generation of vortices. The flexible vortex generator has higher heat transfer efficiency and lower pressure loss than the rigid vortex generator. The two pillars with no spacing generate isolated vortices, and the mixing of these vortices is insufficient downstream the pillars. It is found that with the pillar spacing of 5d, the overall performance factor is significantly higher than that with the pillar spacing of 0d and 10d in the Reynolds number range of 800 to 1100. The average Nusselt number with the spacing of 5d increases by 19.2% compared to that with the spacing of 0d at the Reynolds number of 1000. When the Reynolds number is 1100, the overall performance factor is 43% higher than that with a single rigid pillar. The vortices are periodically generated by the two pillars with the 5d spacing, and the disturbance to the boundary layer enhances the heat transfer downstream the region in the micro-channel.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3