Enhancing pool boiling heat transfer of modified surface by 3D Lattice Boltzmann method

Author:

Huang Qiang1,Zhou Jingzhi2,Huai Xiulan1,Zhou Feng1

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China + School of engineering science, University of Chinese Academy of Science, Beijing, China + Nanjing Institute of FutureEnergy System, Nanjing, China

2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China + Nanjing Institute of FutureEnergy System, Nanjing, China

Abstract

In this study, pool boiling from micro-pillar modified surface has been simulated numerically by a 3D Lattice Boltzmann method(LBM). Effects of geometries and wettability of micro-pillaron boiling heat transfer performance were also systematically evaluated. Result showed that compared with in micro-pillar surface, heat flux of cubic micro-pillar surface was the highest with the lowest wall temperature. In addition, compared to hydrophilic condition, Heat flux of cubic micro-pillar surface with hydrophobic wettability increased by 98.3%. This is because hydrophobic wettability influenced nucleation site density, vapor-liquid flow field and heat transfer performance much more than cubic shaped geometry. Finally, heat flux of cubic micro-pillar surface with hybrid wettability increased by 430.7% compared to pure hydrophilic wettability. That is due to optimal hybrid wettability surface could control nucleate site location, restrict bubble growth, and increase obviously heat transfer performance.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3