STUDY OF THE EFFECT OF HYPOTHERMIC CONSERVATION ON THE INTRACELLULAR SODIUM CONCENTRATION IN THE ENDOTHELIUM OF CORNEAL TRANSPLANTS

Author:

Baturina G. S.,Palchikova I. G.,Konev A. A.,Smirnov E. S.,Katkova L. E.,Solenov E. I.,Iskakov I. А.

Abstract

Endothelial keratoplasty has become the treatment of choice for corneal endothelial dysfunction. Advancements in the surgical treatment of corneal endothelial diseases depend on progress in graft conservation and its related advantages in assessing the suitability of grafts for transplantation. Transport of water and ions by cornea endothelium is important for the optic properties of cornea. In this work, we study the intracellular sodium concentration in cornea endothelial cells in samples of pig cornea that underwent hypothermic conservation for 1 and 10 days and endothelial cells of human cornea grafts after 10-day conservation. The concentration of intracellular sodium in preparations of endothelial cells was assayed using fluorescent dye SodiumGreen. The fluorescent images were analyzed with the custom-made computer program CytoDynamics. An increased level of intracellular sodium was shown in the endothelium after 10-day conservation in comparison with one-day conservation (pig samples). Sodium permeability of pig endothelial cell plasma membranes significantly decreased in these samples. Assessment of intracellular sodium in human cornea endothelium showed a higher level – as was in analogues pig samples of the corneal endothelium. The assay of the intracellular sodium balance concentration established in endothelial cells after hypothermic conservation in mediums L-15 and Optisol-GS showed a significant advantage of specialized me dium Optisol-GS. The balanced intracellular concentration after 10 days of hypothermic conservation was significantly lower in cells incubated at 4 °C in Optisol-GS (L-15, 128 ± 14,  n = 15; Optisol-GS, 108 ± 14, n = 11; mM, p < 0.001). Intracellular sodium concentration could be a useful parameter for assessing cornea endothelium cell viability.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3