A comparative study of endothelial cell transport in pig and human cornea

Author:

Baturina G. S.1,Katkova L. E.1,Kuseina I. M.2,Palchikova I. G.3,Solenov E. I.4,Iskakov I. A.5

Affiliation:

1. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences

2. Novosibirsk State University

3. Novosibirsk State University; Technological Design Institute of Scientific Instrument Engineering, Siberian Branch of the Russian Academy of Sciences

4. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University; Novosibirsk State Technical University

5. S.Fyodorov Eye Microsurgery Clinic, Novosibirsk Branch

Abstract

Purpose. To study the basic transport characteristics of human and pig corneal endothelial cells, including osmotic water permeability, activation of sodium transport from the cell after conservation, and the ability of the cells to restore their volume when transport mechanisms of the endothelial cells are activated at 37°C.Material and methods. The experiments were held on the primary cell culture of human and pig cornea endothelia. Changes in cell volume were determined by a method based on quenching of Calcein fluorescence probe by the cytosol proteins. Changes in intracellular sodium ion concentration were studied using Sodium Green as a fluorescent probe. Restoration dynamics of cell volume and intracellular sodium concentration were studied under medium temperature changes from 20 to 37°C. Osmotic water permeability was calculated from the rate of cell volume changes under medium osmolality decreasing from 560 to 280 mOsm/kg H2 O.Results. It was established that human endothelial cells plasma membrane has a significantly higher osmotic water permeability than pig endothelial cells (Pf = 1.90E-01 ± 4.66E-02 and 1.31E-01 ± 1.16E-02 cm/s, respectively; p < 0.01, n = 17). Human cells after the temperature restored to 37°C, sodium ions removal from human cells occurs more intensely than from pig cells (-3.2E-3 ± 3.1E-4 с-1 и -6.5E-4 ± 1.2E-5 s-1, respectively; p < 0.01, n = 6). The study of cell volume drop has shown that heat activation of cellular transport restores the endothelial cell volume in humans more slowly (-1,7E-4 ± 5,5E-5 с-1, n = 9) than that of pig cells (-1.7E-3 ± 4E-4 s-1, n = 4, p < 0.05).Conclusion. When using the endothelium of pig cornea as an experimental model of human endothelium, we need to take into account the significant difference in parameters that determine cell volume regulation.

Publisher

Real Time, Ltd.

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3