Graph modelling for tracking the COVID-19 pandemic spread

Author:

Rasim Alguliyev ,Ramiz Aliguliyev ,Farhad Yusifov

Abstract

The modelling is widely used in determining the best strategies for the mitigation of the impact of infectious diseases. Currently, the modelling of a complex system such as the spread of COVID-19 infection is among the topical issues. The aim of this article is graph-based modelling of the COVID-19 infection spread. The article investigates the studies related to the modelling of COVID-19 pandemic and analyses the factors affecting the spread of the disease and its main characteristics. We propose a conceptual model of COVID-19 epidemic by considering the social distance, the duration of contact with an infected person and their location-based demographic characteristics. Based on the hypothetical scenario of the spread of the virus, a graph model of the process are developed starting from the first confirmed infection case to human-to-human transmission of the virus and visualized by considering the epidemiological characteristics of COVID-19. The application of graph for the pandemic modelling allows for considering multiple factors affecting the epidemiological process and conducting numerical experiments. The advantage of this approach is justified with the fact that it enables the reverse analysis the spread as a result of the dynamic record of detected cases of the infection in the model. This approach allows for to determining undetected cases of infection based on the social distance and duration of contact and eliminating the uncertainty significantly. Note that social, economic, demographic factors, the population density, mental values and etc. affect the increase in number of cases of infection and hence, the research was not able to consider all factors. In future research will analyze multiple factors impacting the number of infections and their use in the models will be considered.

Publisher

Uptodate In Medicine LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3