Abstract
AbstractFollowing the analogies between 3-manifolds and number rings in arithmetic topology, we study the homology of branched covers of 3-manifolds. In particular, we show some analogues of Iwasawa’s theorems on ideal class groups and unit groups, Hilbert’s Satz 90, and some genus-theory–type results in the context of 3-dimensional topology. We also prove that the 2-cycles valued Tate cohomology of branched Galois covers is a topological invariant, and we give a new insight into the analogy between 2-cycle groups and unit groups.
Publisher
Cambridge University Press (CUP)
Reference23 articles.
1. A note on the group of units of an algebraic number field;Iwasawa;J. Math. Pures Appl,1956
2. A theory of genera for cyclic coverings of links
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献