Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object

Author:

Holm Thorsten,Jørgensen Peter

Abstract

AbstractThe (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-called friezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference22 articles.

1. Representation Theory of Artin Algebras II

2. Generalized frieze pattern determinants and higher angulations of polygons

3. Cluster characters II: a multiplication formula

4. Holm T. and Jørgensen P. , Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II, preprint, arXiv: 1401.4616v1 [math.RT]

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grothendieck groups of d-exangulated categories and a modified Caldero-Chapoton map;Journal of Pure and Applied Algebra;2024-05

2. From Frieze Patterns to Cluster Categories;Modern Trends in Algebra and Representation Theory;2023-08-17

3. The Index With Respect to a Rigid Subcategory of a Triangulated Category;International Mathematics Research Notices;2023-07-17

4. Infinite friezes and triangulations of annuli;Journal of Algebra and Its Applications;2023-06-27

5. Tropical friezes and the index in higher homological algebra;Mathematical Proceedings of the Cambridge Philosophical Society;2020-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3