Affiliation:
1. Department of Mathematics, Aarhus University , 8000 Aarhus C, Denmark
Abstract
Abstract
Palu defined the index with respect to a cluster tilting object in a suitable triangulated category, in order to better understand the Caldero–Chapoton map that exhibits the connection between cluster algebras and representation theory. We push this further by proposing an index with respect to a contravariantly finite, rigid subcategory, and we show this index behaves similarly to the classical index. Let ${\mathcal{C}}$ be a skeletally small triangulated category with split idempotents, which is thus an extriangulated category $({\mathcal{C}},{\mathbb{E}},{\mathfrak{s}})$. Suppose ${\mathcal{X}}$ is a contravariantly finite, rigid subcategory of ${\mathcal{C}}$. We define the index $ {\operatorname{\textrm{ind}}}{_{{\mathcal{X}}}}(C)$ of an object $C\in{\mathcal{C}}$ with respect to ${\mathcal{X}}$ as the $ {K}{_{0}}$-class $[C {]}{_{{\mathcal{X}}}}$ in Grothendieck group $ {K}{_{0}}({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{X}}}}, {{\mathfrak{s}}}{_{{\mathcal{X}}}})$ of the relative extriangulated category $({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{X}}}}, {{\mathfrak{s}}}{_{{\mathcal{X}}}})$. By analogy to the classical case, we give an additivity formula with error term for $ {\operatorname{\textrm{ind}}}{_{{\mathcal{X}}}}$ on triangles in ${\mathcal{C}}$. In case ${\mathcal{X}}$ is contained in another suitable subcategory ${\mathcal{T}}$ of ${\mathcal{C}}$, there is a surjection $Q\colon{K}{_{0}}({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{T}}}}, {{\mathfrak{s}}}{_{{\mathcal{T}}}}) \twoheadrightarrow{K}{_{0}}({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{X}}}}, {{\mathfrak{s}}}{_{{\mathcal{X}}}})$. Thus, in order to describe $ {K}{_{0}}({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{X}}}}, {{\mathfrak{s}}}{_{{\mathcal{X}}}})$, it suffices to determine $ {K}{_{0}}({\mathcal{C}}, {{\mathbb{E}}}{_{{\mathcal{T}}}}, {{\mathfrak{s}}}{_{{\mathcal{T}}}})$ and $\operatorname{Ker}\nolimits Q$. We do this under certain assumptions.
Publisher
Oxford University Press (OUP)
Reference61 articles.
1. Coherent functors;Auslander,1966
2. Queen Mary College Mathematics Notes (republished in [4]);Auslander;Representation Dimension of Artin Algebras,1971
3. Representation theory of Artin algebras. II;Auslander;Comm. Algebra,1974
4. Representation theory of Artin algebras. IV. Invariants given by almost split sequences;Auslander;Comm. Algebra,1977
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献