1. [3] Clemens, J. D., S. Gao, and A. S. Kechris, "Polish metric spaces: Their classification and isometry groups", Bulletin of Symbolic Logic, vol. 7 (2001), pp. 361--75.
2. [4] Friedman, H., and L. Stanley, "A Borel reducibility theory for classes of countable structures", The Journal of Symbolic Logic, vol. 54 (1989), pp. 894--914.
3. [5] Gao, S., and A. S. Kechris, "On the classification of Polish metric spaces up to isometry", Memoirs of the American Mathematical Society, no. 766 (2003).
4. [6] Hjorth, G., Classification and Orbit Equivalence Relations, vol. 75 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2000.
5. [8] Katětov, M., "On universal metric spaces", pp. 323--30 in General Topology and Its Relations to Modern Analysis and Algebra, VI (Prague, 1986), vol. 16 of Research and Exposition in Mathematics, Heldermann, Berlin, 1988.