A Borel reductibility theory for classes of countable structures

Author:

Friedman Harvey,Stanley Lee

Abstract

AbstractWe introduce a reducibility preordering between classes of countable structures, each class containing only structures of a given similarity type (which is allowed to vary from class to class). Though we sometimes work in a slightly larger context, we are principally concerned with the case where each class is an invariant Borel class (i.e. the class of all models, with underlying set = ω, of an Lω1ω sentence; from this point of view, the reducibility can be thought of as a (rather weak) sort of Lω1ω-interpretability notion). We prove a number of general results about this notion, but our main thrust is to situate various mathematically natural classes with respect to the preordering, most notably classes of algebraic structures such as groups and fields.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference15 articles.

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Torsion-free abelian groups are Borel complete;Annals of Mathematics;2024-05-01

2. Euclidean algorithm for a class of linear orders;Discrete Mathematics;2023-12

3. Classes of Algebraic Structures;Journal of Mathematical Sciences;2023-09

4. INVESTIGATING THE COMPUTABLE FRIEDMAN–STANLEY JUMP;The Journal of Symbolic Logic;2023-05-17

5. Anti-classification results for groups acting freely on the line;Advances in Mathematics;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3