Reference18 articles.
1. [1] Ackermann, W., “Zur Widerspruchsfreiheit der Zahlentheorie,” Mathematische Annalen, vol. 117 (1940), pp. 162–194.
2. [2] Avigad, J., “The computational content of classical arithmetic,” pp. 15–30 in Proofs, Categories, and Computations: Essays in Honor of Grigori Mints, edited by F. Solomon and S. Wilfried, vol. 13 of Tributes, College Publications, London, 2010.
3. [3] Baaz, M., and S. Hetzl, “On the non-confluence of cut-elimination,” Journal of Symbolic Logic, vol. 76 (2011), pp. 313–340.
4. [4] Baaz, M., S. Hetzl, A. Leitsch, C. Richter, and H. Spohr, “Cut-elimination: Experiments with CERES,” pp. 481–495 in Logic for Programming, Artificial Intelligence, and Reasoning, edited by F. Baader and A. Voronkov, vol. 3452 of Lecture Notes in Computer Science, Springer, Berlin, 2005.
5. [5] Friedman, H., “Classically and intuitionistically provable recursive functions,” pp. 21–27 in Higher Set Theory (Oberwolfach, 1977), edited by G. H. Müller and D. S. Scott, vol. 669 of Lecture Notes in Mathematics, Springer, Berlin, 1978.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Expansion trees with cut;Mathematical Structures in Computer Science;2019-09
2. A multi-focused proof system isomorphic to expansion proofs;Journal of Logic and Computation;2014-06-06
3. Herbrand-Confluence;Logical Methods in Computer Science;2013-12-18