Development and validation of a simple and rapid UPLC method for the in-vitro estimation of (-)-epigallocatechin-3-gallate in lipid-based formulations

Author:

El-Kayal Maha Osama1ORCID,Sayed Maha Nasr2ORCID,Mortada Nahed Dawood2ORCID,Elkheshen Seham1ORCID

Affiliation:

1. Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, 12311, Cairo, Egypt

2. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11381, Egypt

Abstract

(-)-Epigallocatechin gallate (EGCG) is a catechin found in green tea that has potential health benefits, such as anti-oxidant, anti-carcinogenic and anti-inflammatory effects. A rapid and sensitive Ultra-Performance Liquid Chromatographic (UPLC) method was developed and validated for the estimation of (-)-epigallocatechin-3-gallate in lipid-based formulation. The UPLC method was conducted on C18 analytical column (50 mm × 2.1 mm, 1.8 μm particle size). The mobile phase consisted of a mixture of acetic acid (1%, v:v; pH = 3), acetonitrile and water at volume ratio of 13:15:72 delivered at a flow rate of 0.5 mL/min. The diode array detector (DAD) acquisition wavelength was set at wavelengths 210 and 280 nm. Caffeine was used as internal standard. The tested validation parameters, i.e., selectivity, linearity, accuracy, precision, and sensitivity (Limit of detection and limit of quantification) were determined at both wavelengths. Results revealed that caffeine and EGCG peaks were eluted at retention times of 0.55 and 0.85 minutes, respectively. The calibration curve was linear over the concentration range of 10-60 μg/mL, with coefficients of determination (r2) of 0.9993 and 0.9998 nm at 210 and 280 nm, respectively. All the validation parameters were found within the acceptable range. The proposed method was successfully applied for the quantitation of EGCG in lipid-based formulation and statistical analysis with a reported method showed no significant difference at p < 0.05. Therefore, the proposed analytical method for EGCG can be considered as a rapid, selective and accurate analytical method that can be used for the quantitative analysis of EGCG.

Publisher

European Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3