Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts

Author:

Sarma Bidyut Bikash,Grunwaldt Jan-Dierk

Abstract

Solid materials like heterogeneous catalysts are highly dynamic and continuously tend to change when exposed to the reaction environment. To understand the catalyst system under true reaction conditions,operando spectroscopy is the key to unravel small changes, which can ultimately lead to a significant difference in catalytic activity and selectivity. This was also the topic of the 7th International Congress on Operando Spectroscopy in Switzerland in 2023. In this article, we discuss various examples to introduce and demonstrate the importance of this area, including examples from emission control for clean air (e.g. CO oxidation), oxidation catalysis in the chemical industry (e.g. oxidation of isobutene), future power-to-X processes (electrocatalysis, CO2 hydrogenation to methanol), and non-oxidative conversion of methane. All of these processes are equally relevant to the chemical industry. Complementary operando techniques such as X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and Raman spectroscopy were utilized to derive the ultimate structure of the catalyst. The variety of conditions requires distinctly different operando cells that can reach a temperature range of 400–1000 °C and pressures up to 40 bar. The best compromise for both the spectroscopy and the catalytic reaction is needed. As an outlook, we highlight emerging methods such as modulation-excitation spectroscopy (MES) or quick-extended X-ray absorption fine structure (QEXAFS) and X-ray photon in/out techniques, which can provide better sensitivity or extend X-ray based operando studies.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Swiss Chemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3