Evaluation of effects of selenium nanoparticles on Bacillus subtilis

Author:

Tymoshok N. O.ORCID,Kharchuk M. S.ORCID,Kaplunenko V. G.,Bityutskyy V. S.ORCID,Tsekhmistrenko S. I.ORCID,Tsekhmistrenko O. S.ORCID,Spivak M. Y.ORCID,Melnichenko О. М.ORCID

Abstract

The present study was performed to characterize of selenium nanoparticles (Nano-Se) which were synthesized by pulsed laser ablation in liquids to obtain the aqueous selenium citrate solution. The study was conducted using bacteriological and electronic-microscopic methods. Transmission electron microscopy (TEM) and spectroscopy analyses demonstrated that nano-selenium particles obtained by the method of selenium ablation had the size of 4–8 nm. UV-Visible Spectrum colloidal solution Nano-Se exhibited absorption maxima at 210 nm. To clarify some effects of the action of Nano-Se on Bacillus subtilis, we investigated the interaction of Nano-Se with B. subtilis IMV B-7392 before and after incubation with Nano-Se, examining TEM images. It has been shown that exposure to B. subtilis IMV B-7392 in the presence of Nano-Se is accompanied by the rapid uptake of Nano-Se by bacterial culture. TEM analysis found that the electron-dense Nano-Se particles were located in the intracellular spaces of B. subtilis IMV B-7392. That does not lead to changes in cultural and morphological characteristics of B. subtilis IMV B-7392. Using TEM, it has been shown that penetration of nanoparticles in the internal compartments is accompanied with transient porosity of the cell membrane of B. subtilis IMV B-7392 without rupturing it. The effective concentration of Nano-Se 0.2 × 10–3 mg/mL was found to increase the yield of biologically active substances of B. subtilis. In order to create probiotic nano-selenium containing products, the nutrient medium of B. subtilis IMV B-7392 was enriched with Nano-Se at 0.2 × 10–3 mg/mL. It was found that particles Nano-Se are non-toxic to the culture and did not exhibit bactericidal or bacteriostatic effects. The experimentally demonstrated ability of B. subtilis to absorb selenium nanoparticles has opened up the possibility of using Nano-Se as suitable drug carriers.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Reference78 articles.

1.

Ayala-Castro, C., Saini, A., & Outten, F. W. (2008). Fe-S cluster assembly pathways in bacteria. Microbiology and Molecular Biology Reviews, 72(1), 110–125.

2.

Banerjee, S., & Hansen, J. N. (1988). Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. Journal of Biological Chemistry, 263(19), 9508–9514.

3.

Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics (Tokyo), 58(1), 1–26.

4.

Bityutskyy, V. S., Tsekhmistrenko, О. S., Tsekhmistrenko, S. I., Spyvack, M. Y., & Shadura, U. M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology, 19(3), 9–17.

5.

Böck, A. (2001). Selenium metabolism in bacteria. In: Selenium. Springer, Boston. Pp. 7–22.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3