Detection of mineralogically accentuated biogenic structures with high-resolution geophysics: implications for ichnology and geoecology

Author:

Buynevich Ilya V.ORCID

Abstract

Identification and mapping of small-scale physical and biogenic structures in sand has been a challenge to sedimentologists and ichnologists. Under natural conditions, biogenic activity (trampling tracks, burrows) alter primary sedimentary structures, but also serve as important paleoenvironmental indicators of geotechnical properties of sediments, omission surfaces, and ecosystem dynamics. Therefore, the ability to recognize such structures as anomalies in shallow subsurface, especially when using indirect non-invasive methods, such as geophysical imaging, is an important aspect of assessing their relative contribution to the overall erosional-depositional record. This study presents experimental evidence of the viability of two highresolution geophysical methods in detecting sediment deformation that mimics shallow animal traces. High-frequency (800 MHz) ground-penetrating radar (GPR) imaging aided in visualizing a buried depression produced by a deer hoofprint cast indenter, with high-amplitude reflection return enhanced by a heavy-mineral concentration (HMC). Bulk in situ low-frequency (930 Hz), low-field magnetic susceptibility (MS) experiment supported the theoretical pattern of a decrease in MS over the thickest cover sand (maximum indentation depth) to ~0 mSI and the highest values over raised HMC horizon (marginal ridge; >8 mSI). Because both methods are affected by the presence and relative abundance of heavy minerals, the present approach can be applied in most siliciclastic settings. This study demonstrates the promise of extending the 2D visualization of subsurface targets to 3D datasets, with potential implications for sedimentological, ichnological, archaeological, and geoecological research that involves animal-sediment interaction at different scales.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3