Modern concept of biological identification of selenoproteins

Author:

Stanishevska N. V.ORCID

Abstract

Humans possess 25 selenoproteins, approximately half of which are enzymes (selenoenzymes) required for preventing, regulating, or reversing oxidative damage, while others participate in providing calcium metabolism, thyroid hormone maintenance, protein synthesis, cytoskeletal structure etc. This review examines the latest evidences of the biological effects of selenoproteins according to the method of complex analysis of the material. Selenoprotein P promotes insulin resistance in type 2 diabetes, mediates myocardial ischemic-reperfusion injuries and provides protection against disease by reducing chronic oxidative stress. Selenoprotein T is expressed at the endoplasmic reticulum membrane in all cells during development, but is confined to endocrine tissues in adulthood, controls homeostasis of glucose and prevents neurodegeneration by reducing oxidative stress factors. Expression of selenoprotein K is required for efficient Ca2+ flux into melanoma cancer cells, tumour growth and metastasic potential depend on SelK but it suppresses human choriocarcinoma cells. SelK also serves to maintain the normal physiological functions of skeletal muscle. Selenoprotein N deficiency, caused by mutations in the human gene, promotes myopathy characterized by muscle weakness, spinal rigidity, respiratory insufficiency. Sel N participates in normal physiology of skeletal and smooth muscle tissues. Selenoprotein M is located in the endoplasmic reticulum, characterized by high expression in the brain, antioxidative, neuroprotective activity and regulates intracellular Ca2+ levels. Also, the overexpression of SelM was detected in human hepatocellular carcinoma. Selenoprotein S is mentioned as a regulator of ER stress and inflammatory processes. Selenoprotein F controls cell proliferation by the impact on G1period of the cell cycle. Moreover, it is implicated in the pathogenesis of some types of cancer. The Sel F deficiency reduces the migration and invasive ability of the cells. Knockdown of selenoprotein W in rodents leads to increased release of Ca2+, causes oxidative ultramicroscopic injuries of the endoplasmic reticulum and mitochondria ultrastructure, which in turn increases the levels of inflammatory factors. Selenoprotein H is involved in redox regulation, in tumourogenesis. Knockdown of selenoprotein H decreases cellular differentiation and increases proliferation and migration of cells. Selenoproteins U, V, I, O, R are recently identified and their functions are not clearly known. The data analyzed in the review help determine promising directions in the study of the selenoproteins.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3