Author:
Haner Thomas,Roetteler Martin,Svore Krysta M.
Abstract
We describe an implementation of Shor’s quantum algorithm to factor n-bit integers using only 2n+2 qubits. In contrast to previous space-optimized implementations, ours features a purely Toffoli based modular multiplication circuit. The circuit depth and the overall gate count are in O(n 3 ) and O(n 3 log n), respectively. We thus achieve the same space and time costs as Takahashi et al. [1], while using a purely classical modular multiplication circuit. As a consequence, our approach evades most of the cost overheads originating from rotation synthesis and enables testing and localization of some faults in both, the logical level circuit and an actual quantum hardware implementation. Our new (in-place) constant-adder, which is used to construct the modular multiplication circuit, uses only dirty ancilla qubits and features a circuit size and depth in O(n log n) and O(n), respectively.
Subject
Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献