Single-Trace Side-Channel Attacks on NTRU Implementation

Author:

Rabas TomášORCID,Buček Jiří,Lórencz Róbert

Abstract

AbstractMost of the currently used cryptosystems are not secure in the presence of cryptographically relevant quantum computers. As the research in quantum technologies proceeds, a need for quantum-safe cryptography is imminent. NTRU is a post-quantum public-key cryptosystem based on lattices and was a finalist in the 3rd round of the post-quantum standardization process organized by the National Institute of Standards and Technology (NIST). This paper aims to study the implementation security of the cryptosystem with respect to an attacker with access to power leakage. Such a threat model is relevant especially, but not only, for embedded devices. We studied a countermeasure implementation of the NTRU decryption algorithm from An et al. (Appl Sci https://doi.org/10.3390/app8112014, 2018) that claimed its security against power attacks. This paper revisits an attack presented in as reported by Rabas (In: Proceedings of the 9th International Conference on Information Systems Security and Privacy, ICISSP 2023, Lisbon, 2023) that shows it is in fact vulnerable even in the case of just a single trace available to the enemy for extracting the key. We then describe a new profiling template attack on the implementation and show experimental results of the attack using the same datasets, resulting in a comparison of these two methods and further confirmation of the vulnerability of the algorithm even to generic profiling attacks. Several possible types of countermeasures are discussed.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Czech Technical University in Prague

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computer Networks and Communications,Computer Graphics and Computer-Aided Design,Computational Theory and Mathematics,Artificial Intelligence,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3