The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela

Author:

Olivares Campos Barlin OrlandoORCID,Paredes Franklin,Rey Juan Carlos,Lobo Deyanira,Galvis-Causil Stephanie

Abstract

<p>The water supply for rainfed crops such as bananas in the Aragua state of Venezuela is often uncertain, particularly towards the beginning of the rainy season (April-May). Where climatic conditions are seasonal, the temporal evolution of the NDVI (Normalized Difference Vegetation Index) closely accompanies the interannual variation of vegetation growth in response to thermal and hydric factors. The aim of the study is to assess the relationship between NDVI, rainfall and potential evapotranspiration during the period of January/2016 to December/2017 in a Venezuelan banana plantation. In this study, the NDVI derived from the GIMMS MODIS Terra product, the daily accumulated precipitation data (mm) and the daily mean air temperature (°C) were used as the only way to estimate the potential evapotranspiration. The results showed that the GMOD09Q1-based NDVI reflects reasonably well the spatiotemporal variation in biomass accumulation. Besides, this provides information on the water stress conditions in banana plants at the plot level. The influence of Precipitation and potential evapotranspiration on the NDVI was more evident when a lag of 1 month was considered in terms of the Spearman r, implying that there is a delay in the banana phonological response to rainfall changes and dryness conditions.  However, due to its low spatial resolution (i.e. 250 m), it is not adequate for the identification of banana wilt disease. Therefore, future studies are needed to assess other satellite-derived spectral indices for monitoring the health of banana plants over different sites in Venezuela.</p>

Publisher

Universitas Sebelas Maret

Subject

Atmospheric Science,Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3