An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease

Author:

Wu Chao1,Peng Juan1,Song Tingting1

Affiliation:

1. Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

Abstract

Chrysanthemum wilt is a plant disease that exerts a substantial influence on the cultivation of Chrysanthemum zawadskii (Herb.) for tea and beverage production. The rhizosphere microbial population exhibits a direct correlation with the overall health of plants. Therefore, studying the rhizosphere microbial community of Chrysanthemum zawadskii (Herb.) Tzvel. is of great significance for finding methods to control this disease. This study obtained rhizosphere soil samples from both diseased and healthy plant individuals and utilized high-throughput sequencing technology to analyze their microbial composition. The results showed that the rhizosphere microbial diversity decreased significantly, and the microbial community structure changed significantly. In the affected soil, the relative abundance of pathogenic microorganisms such as rhizospora and Phytophthora was greatly increased, while the relative abundance of beneficial microorganisms such as antagonistic fungi and actinomyces was greatly decreased. In addition, this study also found that soil environmental variables have an important impact on plant resistance; the environmental factors mainly include soil properties, content of major microorganisms, and resistance characteristics of samples. Redundancy analysis showed that the drug-resistant population had a greater impact on the 10 species with the highest abundance, and the environmental factors were more closely related to the sensitive population. In the fungal community, the resistant sample group was more sensitive to the influence of environmental factors and high-abundance fungi. These findings provide a theoretical basis for improving microbial community structure by optimizing fertilization structure, thus affecting the distribution of bacteria and fungi, and thus improving the disease resistance of chrysanthemum. In addition, by regulating and optimizing microbial community structure, new ideas and methods can be provided for the prevention and control of chrysanthemum wilt disease.

Funder

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Institute-land cooperation project of Zhejiang Academy of Agricultural Sciences

Science and Technology Cooperation Program project of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3