Wake Unsteadiness and Tip Vortex System of Full-Scale Helicopters in Ground Effect

Author:

Wolf C. Christian1,Weiss Armin1,Schwarz Clemens1,Braukmann Johannes1,Koch Stefan1,Raffel Markus1

Affiliation:

1. German Aerospace Center (DLR), Gottingen, Germany

Abstract

The main rotor wakes of the free-flying DLR test helicopters Airbus Bo105 and EC135 were investigated in ground effect during hover, vertical takeoff, and forward flight. A high-speed schlieren system tracked the blade tip vortices at about 60 images per revolution. In addition, a constant temperature anemometry system utilized arrays of fiber film sensors, providing velocity statistics and spectra in the rotor flow. The overall wake structure agreed to preceding studies, but the velocity profiles and tip vortex trajectories were sensitive towards the environmental wind conditions. The tip vortices were observed in the schlieren images up to an age corresponding to about two revolutions below the rotor plane, before developing instabilities and falling below the detection limit. Systematic vortex pairing was found for the Bo105 but not for the EC135. The remnants of the tip vortices were identified further downstream in the wake by means of rotor-harmonic velocity signals, but they play a minor role in comparison to broad-banded turbulent fluctuations with a Kolmogorov-like spectrum. For vertical takeoff cases, the rotor wake had a hover-like structure until breaking down into low-frequency oscillations when exceeding a hub height of approximately 1.4 rotor radii. In forward flight, different types of wake velocity footprints were categorized on the basis of the normalized advance ratio. Blade–vortex interactions were found in the frontal area of the main rotor planes and between the main rotor tip vortices and the Bo105's tail rotor. The interactions prevent a further evolution of the tip vortices.

Publisher

AHS International dba Vertical Flight Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3