Practical aspects of designing background-oriented schlieren (BOS) experiments for vortex measurements

Author:

Schwarz Clemens,Braukmann Johannes N.

Abstract

AbstractSetup-related aspects of background-oriented schlieren (BOS) experiments are discussed focusing on a sensitivity parameterS, which represents the relation between light deflection and resulting BOS signal, and the geometric blur. An analytic expression for the geometric blur by means of the circle of confusion (CoC) was derived which shows a proportional relation to the sensitivity factorS. The theoretical findings were validated in a reference experiment using generic distortions in glass plates. It was found that the filtering effect of the blur decreases the maximum background shift and its influence can be expressed with a blur loss factorB, which depends on the size of the CoC in relation to the investigated object. Multiplying the setup sensitivitySwith the blur lossBresults in the effective sensitivity$$S _{{\rm eff}}$$Seffthat determines the maximum achievable BOS signal of a schlieren object. For the investigated reference objects, the maximum effective sensitivity$$S _{{\rm eff}}$$Seffwas found to occur at CoC sizes in the object domain from 2.5 to 3.8 times the extent of the investigated objects. A step-by-step method is proposed for designing BOS experiments to obtain a maximum signal strength. The design parameters are further discussed specifically in regard to rotor tip vortex visualization, for which a variety of previously reported experiments are compared. A simple prediction method for the BOS signal of blade tip vortices is proposed and validated with experimental data from a rotor test stand. The application of the method to rotor systems of different size shows the requirement for increasingly higher sensitivity values for visualizing vortices of small-scale rotors.Graphical abstract

Funder

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3