Author:
Sridharan Ananth,Govindarajan Bharath,Chopra Inderjit
Abstract
This paper presents a methodology for preliminary sizing of unconventional rotorcraft using a physics-based approach to estimate the weight of primary load-carrying members and rotor efficiencies. The methodology is demonstrated for a quadrotor biplane tailsitter, a tilt-body configuration
that can operate in both helicopter and airplane mode. A beam lattice framework for the airframe structure is iteratively adjusted in the sizing loop to accommodate the limit loads. A similar semianalytical approach is followed to size and estimate weight of the rotor blades. Using this analysis,
a consistent combination of vehicle macrodimensions (rotor radius, wing span) and tip speed as well as detailed design parameters (spar height, skin thickness, and cross-section weight) are obtained simultaneously. To compare the effectiveness of various power plants within a weight class,
the sizing methodology was modified to identify the payload for three different vehicle takeoff weights: 20, 50, and 1000 lb. To enable operation within constrained urban canyons, the effect of restricting maximum vehicle dimensions to 10 ftfor the 1000-lb designs is also examined. An electric
transmission model is used in these designs owing to its relative insensitivity of transmission efficiency to the operating RPM. A variable-pitch and variable-RPM rotor design allows for control redundancy within each rotor.
Publisher
American Helicopter Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献