Flight-Validated Electric Powertrain Efficiency Models for Small UASs

Author:

Saemi Farid1ORCID,Benedict Moble1

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, College Station, TX 77840, USA

Abstract

Minimizing electric losses is critical to the success of battery-powered small unmanned aerial systems (SUASs) that weigh less than 25 kgf (55 lb). Losses increase energy and battery weight requirements which hinder the vehicle’s range and endurance. However, engineers do not have appropriate models to estimate the losses of a motor, motor controller, or battery. The aerospace literature often assumes an ideal electrical efficiency or describes modeling approaches that are more suitable for controls engineers. The electrical literature describes detailed design tools that target the motor designer. We developed SUAS powertrain models targeted for vehicle designers and systems engineers. The analytical models predict each component’s losses using high-level specifications readily published in SUAS component datasheets. We validated the models against parametric experimental studies involving novel powertrain flight data from a specially instrumented quadcopter. Given propeller torque and speed, our integrated models predicted a quadcopter’s battery voltage within 5% of experimental data for a 5+ min mission despite motor and controller efficiency errors up to 10%. The models can reduce development costs and timelines for different stakeholders. Users can evaluate notional or existing powertrain configurations over entire missions without testing any physical hardware.

Funder

Army Research Laboratory

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3