Aeroelastic Loads and Stability of Swept-Tip Hingeless Tiltrotors toward High-Speed Instability-Free Cruise

Author:

Gul Seyhan1,Datta Anubhav1

Affiliation:

1. University of Maryland, College Park, MD

Abstract

A hingeless hub tiltrotor with swept-tip blades was examined comprehensively with a new rotorcraft aeromechanics solver developed at the University of Maryland. The solver was verified with hypothetical U. S. Army results and validated with Boeing Model 222 test data from 1972. A 20° sweep back from 80% R increased instability speed to 405 kt, an improvement of more than 75 kt. The key mechanism is the aerodynamic center shift. The trade-off is the increase in control system and blade loads. Fundamental understanding of physics is provided. Proprotor air resonance emerged as the critical phenomenon, not whirl flutter. Predictions in powered mode are necessary. At least the first rotor flap, lag, and torsion modes need to be included. Rotor aerodynamics should use airfoil tables; wing aerodynamics is not important for air resonance. Analysis shows high-speed flight is achievable with 13.5% thick wings but systematic wind tunnel tests with modern equipment are necessary for further validation.

Publisher

AHS International dba Vertical Flight Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3