Exploration of the Effects of Rotor Blade Twist on Whirl-Flutter Stability Boundaries

Author:

Muscarello Vincenzo1ORCID,Quaranta Giuseppe2ORCID

Affiliation:

1. Royal Melbourne Institute of Technology, Melbourne, Victoria 3082, Australia

2. Polytechnic University of Milan, 20156 Milan, Italy

Abstract

This paper investigates the influence of tiltrotor blade twist on whirl-flutter stability boundaries. Preliminary evaluations indicate that the whirl-flutter speed can be increased if the blade twist slope is reduced. This positive effect results from the shift in the overall thrust toward the blade tip, increasing the flapwise bending moment at the blade root and the trim coning angle. This, in turn, generates a positive pitch-lag coupling, increasing the whirl-flutter speed. However, the shift of high sectional thrust forces toward the blade tip sections returns a higher induced drag, showing the tendency to increase the power required. The paper shows that, by using blade twist laws based on piecewise linear functions and adding the wing airfoil thickness as a second design parameter, it is possible to identify aircraft configurations that improve the whirl-flutter stability boundaries without penalizing the power required in airplane and helicopter mode flight. This is possible because the blade twist and the wing airfoil thickness have an impact on both power required and whirl-flutter speed, so a simple optimization algorithm can identify good tradeoffs. A detailed tiltrotor model representative of the Bell XV-15 is used to display the effectiveness of the proposed approach. The examples show that increases up to 21% on the whirl-flutter speed are achievable without penalties in the aircraft power required and with the additional benefit of a benign impact on rotor pitch link loads.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference38 articles.

1. Vibration Isolation of Aircraft Power Plants

2. Propeller-rotor whirl flutter: A state-of-the-art review

3. Parametric Studies for Tiltrotor Aeroelastic Stability in Highspeed Flight

4. MaiselM. “NASA/Army XV-15 Tilt-Rotor Research Aircraft Familiarization Document,” NASA Ames Research Center TM X-62, 407, Mountain View, CA, Jan. 1975.

5. Results of an Aeroelastic Tailoring Study for a Composite Tiltrotor Wing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3