Affiliation:
1. Royal Melbourne Institute of Technology, Melbourne, Victoria 3082, Australia
2. Polytechnic University of Milan, 20156 Milan, Italy
Abstract
This paper investigates the influence of tiltrotor blade twist on whirl-flutter stability boundaries. Preliminary evaluations indicate that the whirl-flutter speed can be increased if the blade twist slope is reduced. This positive effect results from the shift in the overall thrust toward the blade tip, increasing the flapwise bending moment at the blade root and the trim coning angle. This, in turn, generates a positive pitch-lag coupling, increasing the whirl-flutter speed. However, the shift of high sectional thrust forces toward the blade tip sections returns a higher induced drag, showing the tendency to increase the power required. The paper shows that, by using blade twist laws based on piecewise linear functions and adding the wing airfoil thickness as a second design parameter, it is possible to identify aircraft configurations that improve the whirl-flutter stability boundaries without penalizing the power required in airplane and helicopter mode flight. This is possible because the blade twist and the wing airfoil thickness have an impact on both power required and whirl-flutter speed, so a simple optimization algorithm can identify good tradeoffs. A detailed tiltrotor model representative of the Bell XV-15 is used to display the effectiveness of the proposed approach. The examples show that increases up to 21% on the whirl-flutter speed are achievable without penalties in the aircraft power required and with the additional benefit of a benign impact on rotor pitch link loads.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)