Author:
Öhrle Constantin,Frey Felix,Thiemeier Jakob,Keßler Manuel,Krämer Ewald,Embacher Martin,Cranga Paul,Eglin Paul
Abstract
This work presents the correlation of simulation results and flight-test data for a high-speed (V = 220 kt), high advance ratio (μ > 0.5) flight of the compound helicopter X3. The simulation tool chain consists of state-of-the-art coupling between
the computational fluid dynamics (CFD) code FLOWer and the comprehensive analysis tool HOST. By applying a freeflight trim procedure, the experimental flight state is accurately represented in the simulation. The deviations of most trim controls is below 1°, and the maximum deviation is
less than 1.4°. The analysis of the high-fidelity CFD results illustrates key features of the flow physics at this high advance ratio, such as wake interactions, reverse flow, and advancing side loading. The correlation of rotor dynamics data between simulation and flight test is favorable.
Good accordance is demonstrated for flap bending moments, torsion moments, and pitch link loads. In contrast, the correlation is weaker for the chord bending moments for which it is shown that the interblade damper and drive train model mostly determine the structural loads.
Publisher
American Helicopter Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献