The Influence of Rotor Overlapping Azimuth on Compound Coaxial Helicopter Performance Based on Unsteady CFD Simulation

Author:

Li LiangORCID,Zhou Chenglong,Chen Ming,Wang FangORCID,Xu AnanORCID

Abstract

In this paper, a computational fluid dynamics simulation method is developed to study the influence of the rotor overlapping azimuth on the aerodynamic performance of compound coaxial helicopter. The simulation method is verified by comparing the numerical simulation results with the wind tunnel experiment data of the NASA coaxial rotor. Two overlapping azimuths of the upper and lower blades are considered, and the aerodynamic performance of the isolated rotor and the compound coaxial helicopter in hover and forward are analyzed respectively. State 1 means the upper and lower blades overlap at azimuth 0/180° or 90/270°, state 2 means the upper and lower blades overlap at azimuth 45/225° or 135/315°. It is found that the performance of isolated rotors is not affected by rotor overlapping azimuth in hover, but the total thrust fluctuation amplitude of isolated rotors in state 2 is 76.3% smaller than that in state 1 in forward. In the hovering flight of compound coaxial helicopter, compared with state 1, the fluctuation amplitude of the lift of the wing in state 2 is 42.7% smaller; the lift fluctuation amplitude of the flat tail in state 2 is 52.4% smaller. In the forward flight of compound coaxial helicopter, compared with state 1, the total thrust fluctuation amplitude in state 2 is 83.5% smaller; the fluctuation amplitude of the lift of the wing in state 2 is 61.2% smaller. It can be concluded that the compound coaxial helicopter working in state 2 has better aerodynamic performance than the compound coaxial helicopter working in state 1; changing the rotor overlapping azimuth of the upper and lower rotors has a high engineering application value, which can increase aerodynamic stability and reduce lift fluctuations.

Funder

National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. The fundamental configuration and design of the compound helicopter;Orchard;Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.,2003

2. Development and prospect of helicopter technology;Deng;Aeronaut. Sci. Technol.,2021

3. Ehinger, R., McMenemy, M., and Wilson, P. (2019, January 13–16). Bell V-280 Valor: JMR TD flight test update. Proceedings of the Vertical Flight Society’s 75th Annual Forum & Technology Display, Philadelphia, PA, USA.

4. Design and aeromechanics investigation of compound helicopters;Yeo;Aerosp. Sci. Technol.,2019

5. The future of the military helicopter;Hussain;RUSI J.,1985

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3