Author:
McIntosh Kristoff,Reddinger Jean-Paul, , ,Mishra Sandipan,Zhao Di
Abstract
This paper introduces a methodology for an optimization-based trajectory planner for the autonomous transition of a quadrotor biplane tailsitter (QRBP) between the flight modes of hover to forward flight and forward flight to hover. The trajectory planner uses a simplified first principles dynamic model of the QRBP in the formulation of a optimization problem for trajectory planning. Additional constraints on the trajectory are imposed based on physical limitations, such as available power, stall limits, among others. The cost function for the optimization problem is chosen to be the time-of-transition. The solution of this problem generates time-optimal state and input trajectories for transition. To validate the algorithm, the trajectories are tested on a flight dynamics simulation of a QRBP to demonstrate feasibility and tracking performance with an inner-loop PID feedback controller; and compared against trajectories generated from a heuristic approach. The results of the simulated tracking performance indicate the proposed trajectory planner is capable of generating feasible transition trajectories for the previously specified flight modes.
Publisher
The Vertical Flight Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献