Mathematical modelling of thermal stresses within the borehole walls in terms of plasma action

Author:

Bulat AnatoliiORCID,Osіnnii Valentyn,Dreus AndriiORCID,Osіnnia Nataliia

Abstract

Purpose is the development of a mathematical model to study and describe thermal processes within the borehole wall in terms of plasma-based rock breaking. Methods. The following has been applied: theoretical analysis in the framework of a theory of brittle thermoelasticity breaking, methods of mathematical modeling, and computational experiment. Findings. Brief information on the results of the development of advanced plasma-based technology for borehole reaming for hard mineral mining has been represented. The results of industrial tests of plasma plant of 150-200 kW·s power with plasma-generating gas in the air for hard rock breaking have been represented. The plant and plasma-based technology of borehole reaming were tested in underground conditions of Kryvbas mines while reaming a perimeter hole to drive a ventilation rise in silicate-magnetite quartzites. A mathematical model has been proposed to analyze heat and mechanical fields in the rock during the plasma-based action on the borehole walls. Numerical studies of the temperature dynamics and thermal stresses within the borehole-surrounding rock layer have been carried out. It has been demonstrated that if low-temperature plasma is used (Т = 3500-4000°С), thermal compressing stresses are induced within the thin rock layer; the stresses may exceed the boundary admissible ones. It has been identified that plasma-based effect on the borehole wall makes it possible to create the conditions for intense rock fracturing and breaking. Originality. Solution of a new problem of thermoelastic state of a borehole wall in terms of plasma action has been obtained. The proposed mathematical model has been formulated in a cylindrical coordinate system and considers convective and radiation heat exchange between a plasma jet and a borehole wall. Practical implications. The obtained results make it possible to assess the rock state depending on the plasma jet parameters. The proposed methods of calculations will help carry out research to evaluate breaking parameters (the required heating time, thickness of the heated layer, and approximate spall dimensions) and develop different methods for the breaking process control.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3