Review of machine learning and deep learning application in mine microseismic event classification

Author:

Jinqiang WangORCID,Basnet PrabhatORCID,Mahtab ShakilORCID

Abstract

Purpose. To put forward the concept of machine learning and deep learning approach in Mining Engineering in order to get high accuracy in separating mine microseismic (MS) event from non-useful events such as noise events blasting events and others. Methods. Traditionally applied methods are described and their low impact on classifying MS events is discussed. General historical description of machine learning and deep learning methods is shortly elaborated and different approaches conducted using these methods for classifying MS events are analysed. Findings. Acquired MS data from rock fracturing process recorded by sensors are inaccurate due to complex mining environment. They always need preprocessing in order to classify actual seismic events. Traditional detecting and classifying methods do not always yield precise results, which is especially disappointing when different events have a similar nature. The breakthrough of machine learning and deep learning methods made it possible to classify various MS events with higher precision compared to the traditional one. This paper introduces a state-of-the-art review of the application of machine learning and deep learning in identifying mine MS events. Originality.Previously adopted methods are discussed in short, and a brief historical outline of Machine learning and deep learning development is presented. The recent advancement in discriminating MS events from other events is discussed in the context of these mechanisms, and finally conclusions and suggestions related to the relevant field are drawn. Practical implications. By means of machin learning and deep learning technology mine microseismic events can be identified accurately which allows to determine the source location so as to prevent rock burst. Keywords: rock burst, MS event, blasting event, noise event, machine learning, deep learning

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3