Abstract
Purpose. Disc cutters are the main cutting tools for the Tunnel Boring Machines (TBMs). Prediction of the number of consumed disc cutters of TBMs is one of the most significant factors in the tunneling projects. Choosing the right model for predicting the number of consumed disc cutters in mechanized tunneling projects has been the most important mechanized tunneling topics in recent years. Methods. In this research, the prediction of the number of consumed disc cutters considering machine and ground conditions such as Power (KW), Revolutions per minute (RPM) (Cycle/Min), Thrust per Cutter (KN), Geological Strength Index (GSI) in the Sabzkooh water conveyance tunnel has been conducted by multiple linear regression analysis and multiple nonlinear regression, Gene Expression Programming (GEP) method and Support Vector Machine (SVM) approaches. Findings. Results showed that the number of consumed disc cutters for linear regression method is R2 = 0.95 and RMSE = 0.83, nonlinear regression method is – R2 = 0.95 and RMSE = 0.84, Gene Expression Programming (GEP) method is – R2 = 0.94 and RMSE = 0.95, Support Vector Machine (SVM) method is – R2 = 0.98 and RMSE = 0.45. Originality. During the analyses, in order to evaluate the accuracy and efficiency of predictive models, the coefficient of determination (R2) and root mean square error (RMSE) have been used. Practical implications. Results demonstrated that all four methods are effective and have high accuracy but the method of support vector machine has a special superiority over other methods.
Publisher
Dnipro University of Technology
Subject
Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献