Refinement of New-Generation Open-Graded Friction Course Mix Design

Author:

Watson Donald E.1,Ann Moore Kathryn1,Williams Kevin1,Allen Cooley L.1

Affiliation:

1. National Center for Asphalt Technology, 277 Technology Parkway, Auburn, AL 36830

Abstract

Open-graded friction course (OGFC) has been used in the United States for more than 50 years. In 2000, National Center for Asphalt Technology (NCAT) research led to a recommended mix design procedure for a new-generation OGFC, but the work involved only one aggregate source. Therefore, NCAT is in the process of refining this design procedure to ensure that it is applicable to other aggregate types used in surface mixes throughout the United States. The objectives of NCAT's current research are to refine and field validate the new-generation OGFC mix design procedure. This work has led to several experiments. Several objectives have been identified that need to be addressed. Superpave® technology and use of the Superpave gyratory compactor (SGC) need to be incorporated into the mix design procedure. The Cantabro test for durability and resistance to stone loss needs to be adapted to SGC-prepared specimens and performance parameters established. The asphalt draindown test (AASHTO T 305-97), which was developed for stone-matrix asphalt mixtures, also needs to be evaluated for applicability to OGFC mixtures. In addition, a method for effectively evaluating air void criteria needs to be investigated. On the basis of the research conducted in this study, 50 gyrations of the SGC was selected as the design compactive effort during mix design. Also, the use of SGC-prepared samples during the Cantabro test appears to be a reasonable alternative to use of Marshall-compacted samples.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference11 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Skid Resistance of New Mexico Pavements;International Conference on Transportation and Development 2024;2024-06-13

2. A comprehensive review on pervious concrete;Construction and Building Materials;2023-12

3. Field Performance of Thin Open-Graded Friction Overlays;Airfield and Highway Pavements 2023;2023-06-13

4. Effect of Pore Characteristics on Sound Absorption Ability of Permeable Pavement Materials;Advances in Civil Engineering;2023-05-25

5. An experimental study on the performance of porous asphalt cool pavement;Materials Today: Proceedings;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3