Effect of Pore Characteristics on Sound Absorption Ability of Permeable Pavement Materials

Author:

Song Weimin1,Zhang Miaomiao1,Wu Hao1ORCID,Zhu Peng23ORCID,Liu Zhuo4,Yin Jian5

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, Hunan, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

3. Key Laboratory of Performance Evolution and Control for Engineering Structures, Tongji University, Ministry of Education, Shanghai 200092, China

4. Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken 7030, NJ, USA

5. School of Civil Engineering & Mechanics, Central South University of Forestry and Technology, Changsha 410004, Hunan, China

Abstract

Permeable pavement materials are attracting great attention due to the superior benefits in fast drainage, driving safety, and noise reduction effectiveness. This study investigated the sound absorption behaviors of permeable pavement materials, including permeable cement concrete (PCC) and open-graded friction course asphalt mixture (OGFC). The sound absorption coefficients (SACs) of dense-graded cement concrete and dense-graded asphalt mixture were also measured for comparison. The sound absorption test was conducted by the impedance tube method according to ASTM E1050-19. Computed tomography (CT) scanning tests were conducted to obtain the pore characteristics of PCC and OGFC, including porosity distribution, pore size, and coordination number (CN). The porosity distribution, pore size distribution, and CN distribution presented a symmetrical trend of decreasing, then increasing, and then decreasing with the increase of specimen height. When OGFC and PCC showed similar porosities, the pore number of PCC was significantly larger than that of OGFC. Comparisons of the peak SAC and the average SAC were made between PCC and OGFC. Correlations were made between the SAC and the pore characteristics. Results indicated that with increasing porosity, the peak SAC and the average SAC both increased significantly for PCC and OGFC. The characteristic pore size, pore number, and CN distribution together affected the SAC. At the same porosity, OGFC mixtures presented larger average SAC compared to PCC, which was ascribed to the fact that more pores with larger size and a better pore connectivity existed in OGFC mixtures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3