Increased Convergence Rates in Multiagent Transport Simulations with Pseudosimulation

Author:

Fourie Pieter J.1,Illenberger Johannes2,Nagel Kai2

Affiliation:

1. Future Cities Laboratory, Singapore-ETH Centre, 06-01 CREATE Tower, Singapore, 138602.

2. Transport Systems Planning and Transport Telematics, Institute for Land and Sea Transport Systems, Technische Universität Berlin, Sekr. SG12, Salzufer 17-19, 10587 Berlin, Germany.

Abstract

A multimodeling approach to large-scale, activity-based, multiagent simulation of travel demand is introduced. MATSIM is a full activity-based transport simulation. Its greatest current performance limitation is the network loading simulation, currently a queue simulation (QSim). QSim is iteratively executed for the entire agent population for evaluating the effects of random mutations on the activity plans of a fraction of the population. After each QSim, poorly performing plans are discarded, good plans are kept, and the agents slowly learn what works best for their individual activity needs. In the application presented, the system periodically replaces QSim for a number of iterations with a simplified pseudosimulation that runs approximately two orders of magnitude faster. The pseudosimulation uses travel time information from the preceding QSim iteration to estimate how well an agent day plan might perform. Repeated iterations of the pseudosimulation produce better-performing plans in a short time. These plans are passed to the QSim for updating of network travel time information, and the process repeats. The technique is tested in a scenario for Zurich, Switzerland, and incorporates mode choice, road pricing, secondary activity location choice, activity timing adjustment, and dynamic routing. The technique dramatically improves convergence rates for such complex, large-scale simulations and fully exploits modern multicore computer architectures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3