Automated Analysis of Pedestrian–Vehicle Conflicts

Author:

Ismail Karim12,Sayed Tarek1,Saunier Nicolas3

Affiliation:

1. Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

2. Department of Civil Engineering, Carleton University, 1125-3432 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.

3. Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, C.P. 6079, succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada.

Abstract

This paper presents a novel application of automated video analysis for a before-and-after (BA) safety evaluation of a scramble phase treatment. Data availability has been a common challenge to pedestrian studies, especially for proactive safety analysis. The traditional reliance on collision data has many shortcomings because of the quality and quantity of collision records. Qualitative and quantitative issues with road collision data are more pronounced in pedestrian safety studies. In addition, little information on the mechanism of action implicated can be drawn from collision reports. Traffic conflict techniques have been advocated as supplements or alternatives to collision-based safety analysis. Automated conflict analysis has been advocated as a new safety analysis paradigm that empowers the drawbacks of survey-based and observer-based traffic conflict analysis. One of the areas of focus of pedestrian safety that could greatly benefit from vision-based road user tracking is BA evaluation of safety treatments. This paper demonstrates the feasibility of conducting a BA analysis with video data collected from a commercial-grade camera in Chinatown, Oakland, California. Video sequences for a period of 2 h before and 2 h after scramble were automatically analyzed. The BA results of the automated analysis exhibit a declining pattern of conflict frequency, a reduction in the spatial density of conflicts, and a shift in the spatial distribution of conflicts farther from crosswalks.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3