Analytical Capacity Comparison of One-Way and Two-Way Signalized Street Networks

Author:

Gayah Vikash V.12,Daganzo Carlos F.1

Affiliation:

1. 416G McLaughlin Hall, Room 1720, University of California, Berkeley, Berkeley, CA 94720-1720

2. Department of Civil and Environmental Engineering, Pennsylvania State University, 223A Sackett Building, University Park, PA 16802.

Abstract

Recently cities have been converting traditional one-way downtown street networks to two-way operation partly because one-way networks are seen as confusing and as less conducive to economic activity and a livable environment and they require vehicles to travel longer distances on average. However, one of the main disadvantages of such conversions is thought to be a reduction in the network's ability to serve vehicles. Intersections in two-way networks can serve fewer vehicles per unit time than their one-way counterparts. Several studies have assessed the differences between these two types of networks, but most studies are site specific and do not consider the best possible two-way networks. This paper presents an analytical model that uses macroscopic analysis techniques to compare various one-way and two-way networks using their trip-serving capacities. This metric is a key indicator of network performance. Two-way networks can serve more trips per unit time than one-way networks when average trip lengths are short. This study also found that two-way networks in which left-turn movements were banned at intersections could always serve trips at a higher rate than one-way networks could, even long trips. Thus, the trip-serving capacity of a one-way network can actually be increased when it is converted to two-way operation if left turns are banned. In this way, livability and efficiency objectives can be achieved simultaneously. This framework can be used by planners and engineers to determine how much a network's capacity changes after a conversion, and also to unveil superior conversion options.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference24 articles.

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3