Optimization of Amount and Blending of Cementitious Materials in High-Performance Concrete

Author:

Bajorski Peter1,Streeter Donald A.2

Affiliation:

1. Rochester Institute of Technology, Center for Quality and Applied Statistics, 98 Lomb Memorial Drive, Rochester, NY 14623-5604

2. New York State Department of Transportation, Materials Bureau, State Campus, Albany, NY 12232-0869

Abstract

In recent years, there has been a demand by the traveling public for longer-lasting, more durable transportation structures. One of the biggest problems encountered is the corrosion of reinforcing steel used in concrete applications. To reduce the damage caused by the ingress of chlorides, and the subsequent corrosion, the New York State Department of Transportation (NYSDOT) has developed and used a high-performance concrete, designated Class HP. As part of a continuous improvement effort to produce longer-lasting structures, research has been ongoing to further improve the characteristics of Class HP concrete. The study is a continuation of the previous experimental work performed by the NYSDOT and reported in Transportation Research Record 1574. During that study, the effects of microsilica, fly ash, and the total cementitious mass in a mixture on cracking and permeability of the resulting concrete were studied. The experimental design used in the investigation resulted in testing a minimal number of concrete mixtures yet allowed the analysis of a broad range of possible combinations. Statistical analysis of experimental data is presented, and examples of a scientific approach to experimentation are shown. The Response Surface Methodology was used with the appropriate statistical experimental designs, including the Box–Behnken design. In addition to the traditional linear regression models, a modern technique of the local regression was used.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3