Assessing the Effect of Considering Multiple Data Properties on Detecting Potential Errors in Pavement Condition Data

Author:

Siabil Salar Zabihi1,Gharaibeh Nasir G.2

Affiliation:

1. Wallace Montgomery and Associates, Suite 200, 10150 York Road, Hunt Valley, MD 21030

2. Zachry Department of Civil Engineering, Dwight Look College of Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843

Abstract

The quality of pavement condition data can affect the assessment of current condition, predictions of future condition, and the reliability of maintenance and rehabilitation plans and funding need estimates at the network level. Thus, improving the quality of pavement condition data is an ongoing process for transportation agencies. Detecting potential errors in network-level pavement condition data is a primary step in assessing and enhancing the accuracy of this data. Current error detection techniques tend to focus on analyzing time series trends in pavement condition to identify unexpected changes that may denote data errors. However, there are additional properties of these data that can be used to identify potential errors, including variability within uniform performance families and consistency between multiple performance indicators. This paper assesses the effect of considering those data properties on detecting potential errors in pavement condition data. Three case analyses were defined such that each considered a different combination of these properties to identify likely errors. The analyses were performed on a pavement condition data set representing the Brownwood District roadway network of the Texas Department of Transportation. The results of this investigation indicate that considering such properties in a combined manner can reduce the numbers of false positive errors and false negative errors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference9 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3