Affiliation:
1. Tennessee Department of Transportation, Asset Management Division, Nashville, TN
2. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
Abstract
The use of pavement condition data to support maintenance and resurfacing strategies and justify budget needs becomes more crucial as more data-driven approaches are being used by the state highway agencies (SHAs). Therefore, it is important to understand and thus evaluate the influence of data variability on pavement management activities. However, owing to a huge amount of data collected annually, it is a challenge for SHAs to evaluate the influence of data collection variability on network-level pavement evaluation. In this paper, network-level parallel tests were employed to evaluate data collection variability. Based on the data sets from the parallel tests, classification models were constructed to identify the segments that were subject to inconsistent rating resulting from data collection variability. These models were then used to evaluate the influence of data variability on pavement evaluation. The results indicated that the variability of longitudinal cracks was influenced by longitudinal lane joints, lateral wandering, and lane measurement zones. The influence of data variability on condition evaluation for state routes was more significant than that for interstates. However, high variability of individual metrics may not necessarily lead to high variability of combined metrics.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献