Analytically Based Approach to Rutting Prediction

Author:

Deacon John A.1,Harvey John T.2,Guada Irwin3,Popescu Lorina4,Monismith Carl L.2

Affiliation:

1. Department of Civil Engineering, University of Kentucky, CE/KTC Building, Lexington, KY 40506-0281

2. Building 452, University of California, Berkeley, Pavement Research Center, Institute of Transportation Studies, 1353 S. 46th Street, Richmond, CA 94804

3. Building 480, University of California, Berkeley, Pavement Research Center, Institute of Transportation Studies, 1353 S. 46th Street, Richmond, CA 94804

4. Building 452-T, University of California, Berkeley, Pavement Research Center, Institute of Transportation Studies, 1353 S. 46th Street, Richmond, CA 94804

Abstract

An analytically based (mechanistic-empirical) procedure was conducted to estimate the development of rutting in asphalt pavements as a function of both traffic loading and environment as defined by pavement temperatures. The procedure uses permanent strain determined for a representative asphalt concrete mix as a function of load repetitions, shear stress, and elastic shear strain. It combines multilayer elastic analysis for determining key shear stresses and strains in the asphalt concrete resulting from traffic loading to be used in the permanent strain expression with a time-hardening procedure for the accumulation of permanent strain as a function of both traffic loading and environment. The WesTrack test sections were used to calibrate the methodology, with results of rutting predictions evaluated for four different test sections from that experiment. Based on the results of the regression analyses, an expression can be used to determine coefficients for use in the permanent strain expression that reflect the permanent deformation characteristics of a specific mix as measured in repeated simple shear test at constant height. In addition to the WesTrack examples, results illustrated the use of the approach to predict rutting development in a controlled loading condition at 50°C (122°F) using the heavy vehicle simulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3